Alternating Groups and Latin Squares
نویسندگان
چکیده
منابع مشابه
Latin Squares: Transversals and counting of Latin squares
Author: Jenny Zhang First, let’s preview what mutually orthogonal Latin squares are. Two Latin squares L1 = [aij ] and L2 = [bij ] on symbols {1, 2, ...n}, are said to be orthogonal if every ordered pair of symbols occurs exactly once among the n2 pairs (aij , bij), 1 ≤ i ≤ n, 1 ≤ j ≤ n. Now, let me introduce a related concept which is called transversal. A transversal of a Latin square is a se...
متن کاملOn Arc-Regular Permutation Groups Using Latin Squares
For a given a permutation group G, the problem of determining which regular digraphs admit G as an arc-regular group of automorphism is considered. Groups which admit such a representation can be characterized in terms of generating sets satisfying certain properties, and a procedure to manufacture such groups is presented. The technique is based on constructing appropriate factorizations of (s...
متن کاملLifting Redundancy from Latin Squares to Pandiagonal Latin Squares
In the pandiagonal Latin Square problem, a square grid of size N needs to be filled with N types of objects, so that each column, row, and wrapped around diagonal (both up and down) contains an object of each type. This problem dates back to at least Euler. In its specification as a constraint satisfaction problem, one uses the all different constraint. The known redundancy result about all dif...
متن کاملIrreducibility of Tensor Squares, Symmetric Squares and Alternating Squares
We investigate the question when the tensor square, the alternating square, or the symmetric square of an absolutely irreducible projective representation V of an almost simple group G is again irreducible. The knowledge of such representations is of importance in the description of the maximal subgroups of simple classical groups of Lie type. We show that if G is of Lie type in odd characteris...
متن کاملLatin Squares and Redundant Inequalities
A complete classification of redundant sets of inequalities in the specification of the Latin Square problem of size N is proven. Related issues on variations of the same problem are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1989
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(89)80045-9